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Numerical Analysis of Helical Piles Under Axial Loading 

Influence of the number of helical plates, helical spacing and the 

conditions at the base 

 

Abstract: The work here presented comprises the literature review about helical piles (HP), including 

a survey of the existing analytical methods to estimate the axial capacity. Having identified the existence 

of several analytical approaches, for two of the most used methods, the main differences were 

recognized and the results estimated from these were compared with those obtained from the 

axisymmetric numerical analyses performed by ABAQUS, a computer software suite for finite element 

analysis. In the absence of literature regarding numerical modelling of HP, simulation results were 

validated with compression responses of a single axially loaded pile. Based on this numerical validation, 

two more simulations were performed: i) a parametric study, to understand the effect of varying the 

number of helical plates and the helical plate spacing on the failure surfaces of vertically loaded axial 

piles, in both compression and tension, in cohesive soils; ii) a further analysis to study the behaviour of 

HP in compression, in a two-layered soil. 

Through the parametric study, it was possible to identify a good agreement between the reported failure 

mechanisms, for the considered helical plate spacings, and the results of the performed analysis. 

Nevertheless, regarding the accuracy of the existing analytical approaches reviewed in this thesis, a 

new analytical formulation is proposed, based on the obtained numerical results. 

Regarding the analysis on the two-layered soil, as no specific method was found in the literature, a 

generic approach was compared with the numerical analysis developed. Again, given its suitability, a 

new analytical formulation is also proposed. 

Keywords: Helical piles; Pile design; Axial load; Failure mechanisms; Numerical modelling; Analytical 

methods. 

 

1 Introduction 

Helical piles are commonly used in other 

countries for over 180 years and, nowadays, 

there are more than 50 manufacturing 

companies on 4 of the 6 continents [1]. 

However, in Portugal there is no record that 

helical piles have ever been used in the civil 

construction sector. Since this type of 

foundation is an alternative to current indirect 

foundations, in a wide range of solutions, helical 

piles are considered an important tool in the 

geotechnical design.  

Despite all the advantages associated with this 

type of foundation, there are still some 

knowledge gaps. In the available literature, it is 

common to find some highlights regarding the 

significant disparity between the theoretically 

predicted results and those measured in load 

tests. Thus, this issue may overturn the 

economic advantage of this solution since an 

efficient design is only achievable through load 

tests in multiple piles. Therefore, there is an 

urgent need to carry out further studies on this 

type of foundation, to find more accurate 

methods to estimate the pile capacity. 
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2 Literature review: design 

methods 

There are two methods for predicting HP 

capacity, based on theoretical soil mechanics, 

namely, individual bearing and cylindrical 

shear. 

2.1 Individual bearing method 

The individual bearing method failure is 

explained by each helix behaving 

independently, since the spacing between 

helical plates is very large. A free body diagram 

showing an idealized distribution of the forces 

involved in this method is shown in Figure 1(a). 

Under compressive loading, the parameters 

affecting the bearing capacity will depend on 

the undisturbed soil bellow each helical plate, 

whereas under tension, the uplift capacity will 

depend on the disturbed soil above it. Adhesion 

stresses are assumed along the length of the 

shaft. Thus, the overall capacity of a HP, 𝑅, is 

the sum of the individual capacities of all the 

helical plates, 𝑅ℎ,𝑖, along with the shaft 

resistance, 𝑅𝑓 [1-3]:  

𝑅 =∑𝑅ℎ,𝑖

𝑛

𝑖

+ 𝑅𝑓 (1) 

The shaft resistance is a function of its surface 

lateral area that depends on the length of the 

shaft, 𝐿. Skempton [1] showed that the bearing 

capacity factor, 𝑁𝑐, approaches a constant 

value of 9 for deep foundations. Therefore, it is 

usual to consider 𝑁𝑐 = 9 and several authors 

follow this approach [1-4]. As cohesion of the 

soil can be taken as the undrained shear 

strength, 𝑆𝑢, in cohesive soils, the capacity of 

the HP by the individual bearing method is 

given by: 

𝑅 =∑9𝑆𝑢𝐴𝑖 +

𝑛

𝑖

𝛼𝑆𝑢𝐿(𝜋𝑑) (2) 

Where 𝐴𝑖 is the area of helical plate 𝑖, 𝛼 is the 

adhesion factor between soil and the shaft and 

𝑑 is the diameter of the HP shaft. 

2.2 Cylindrical shear method 

The cylindrical shear method assumes that the 

entire volume of soil between helical plates is 

mobilized, acting as a semi-rigid body that 

develops a cylindrical shear surface. 

(a)  (b) 

Figure 1: Forces involved on a HP under 
compression for (a) individual bearing method; 

(b) cylindrical shear method 

This happens when the spacing between 

helical plates is small. A free body diagram 

showing the forces involved on the HP for 

cylindrical shear method is shown in Figure 

1(b). Thus, the overall capacity of a HP based 

on this method is defined as a combination of 

shear along the cylinder, 𝑅𝑐𝑦𝑙, individual 

capacity of the bottom (for compressive 

loading) or the top helical plate (for HP under 

tension), 𝑅ℎ, and shear along the HP, 𝑅𝑓, being 

given by: 

𝑅 = 𝑅ℎ + 𝑅𝑐𝑦𝑙 + 𝑅𝑓 (3) 

Nevertheless, in the cylindrical shear method, 

the surface lateral area of the helical shaft 

depends on its length above the top helix. Thus, 

taking 𝑁𝑐 = 9 and 𝑐 = 𝑆𝑢, it is possible to rewrite 

equation 3 as 

𝑅 = 9𝑆𝑢𝐴ℎ + 𝑆𝑢(𝑛 − 1) 𝑠𝜋𝐷 + 𝛼𝑆𝑢𝐻𝑇(𝜋𝑑) (4) 

Where 𝐴ℎ is the area of the bottom helix, for 

compressive loading, or the area of the top 

helix, for tensile loading, 𝑛 is the number of 

helices, 𝑠 is the spacing between helical plates, 

𝐷 is the diameter of the helical plates and 𝐻𝑇 is 

the length of the helical pile shaft located above 

the top helix. All other parameters have been 

defined previously.  
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3 Numerical analysis: 

parametric study of helical 

piles in homogenous soil 

3.1 Parametric study 

The aim of the parametric study is to 

understand the effect of varying the number of 

helical plates, 𝑛, and the helical plate spacing, 

𝑠, on the failure mechanisms of helical piles 

under compressive or tensile axial loads. Thus, 

keeping 𝑛 constant, it is possible to ascertain 

the results as function of 𝑠/𝐷, and the other way 

around. It was decided to study 𝑠/𝐷 modelling 

HP provided with 2 or 3 helical plates, varying 

the distance between pile top and bottom 

helical plates (𝐿𝑐), since it is also intended to 

study the influence of 𝑛 on the pile capacity. 

In Figure 2 is showed a typical helical pile and 

all the dimensional parameters defined in the 

parametric study, where 𝑒𝑓 is the pile shaft 

thickness, 𝑒ℎ is the thickness of helical plates 

and 𝐻𝐵 is the distance between pile bottom and 

the bottom helical plate. All other parameters 

have been defined previously. As a helical pile 

is classified as deep if, at ultimate collapse, the 

observed failure mechanism is characterized by 

localised shear around the helical plates and is 

not affected by the location of the soil surface 

[5], the depth of the top helix (𝐻𝑇) was defined 

to ensure a failure mode of this type.  

The value of the considered helical plate 

spacing ratios, 𝑠/𝐷, was based on the values 

pointed out by several authors as the ideal 

spacing of helical plates- where results from  

 

Figure 2: Dimensional parameters of a typical HP 

individual bearing and cylindrical shear 

methods are equal. 

In Table 1 is presented in detail all the 

dimensions of the helical piles analysed in the 

parametric study. 

3.2 Analytical methods 

Several authors focused on this topic and have 

established multiple analytical approaches to 

estimate the helical pile capacity using both 

individual bearing and cylindrical shear 

methods. Therefore, some of the existing 

analytical approaches in the literature were 

reviewed (Table 2). All the analytical 

formulations studied adopt 𝑁𝑐 = 9 and the main 

differences are related to i) consider shaft 

resistance as a resisting force; ii) the value of 

the adhesion factor; iii) consider the overburden 

Table 1: Dimensions of the helical piles analysed in the parametric study 

𝒏 𝒅 [mm] 𝒆𝒇 [mm] 𝑫 [mm] 𝒆𝒉 [mm] 𝑯𝑩 [mm] 
𝑳𝒄 

[mm] 
𝑯𝑻 [mm] 

𝑳 
[mm] 

𝒔 
[mm] 

𝒔/𝑫 
Case 
name 

2 

89 5,5 254 12,7 10 

254 

3500 

3764 254 1,0 H2SD1,0 

381 3891 381 1,5 H2SD1,5 

508 4018 508 2,0 H2SD2,0 

635 4145 635 2,5 H2SD2,5 

762 4272 762 3,0 H2SD3,0 

889 4399 889 3,5 H2SD3,5 

3 

508 4018 254 1,0 H3SD1,0 

762 4272 381 1,5 H3SD1,5 

1016 4526 508 2,0 H3SD2,0 

1270 4780 635 2,5 H3SD2,5 

1524 5034 762 3,0 H3SD3,0 

1778 5288 889 3,5 H3SD3,5 
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pressure above helices. 

In Figure 3 the estimates for the pile capacity 

obtained by the different analytical approaches 

for the group of piles with two and three helical 

plates are presented. In both cases, the results 

vary over a considerably wide range: 

approximately 20 kN for group H2, and between 

20 to 30 kN for group H3. In both sets, the 

approaches of H. A. Perko and R. W. 

Stephenson appear to be the most 

conservative. The Rao, Prasad and Shetty, Rao 

Prasad and Veeresh and Clemence’s 

approaches present estimates that are closer to 

each other - these three approaches apply the 

cylindrical shear method. Stephenson’s 

approach, using the cylindrical shear method, 

despises the shaft resistance and, therefore, 

demonstrates to be more conservative, as 

already mentioned. 

Comparing the approaches that uses the 

individual bearing method, the estimates 

obtained according to Adams & Klym’s 

approach stand out from the remaining for two 

main reasons: i) for small helical plate spacing 

ratios, the highest value for the pile capacity is 

determined by this approach; ii) for larger 

helical plate spacing ratios, the estimates are 

close to the results obtained by the cylindrical 

shear method. The first reason is because 

Adam & Klym consider the total length of the 

shaft to the shaft resistance, which added to the 

resistance of the various helices exceeds the 

pile capacity estimates according to the 

cylindrical shear method. The second point is 

motivated by the consequent increase of the 

estimates by the cylindrical shear method with 

the increase of the helical plate spacing ratio. 

H. A. Perko’s approach estimates the lowest 

pile capacity calculated using both methods. 

Thus, for the considered geometries, the 

cylindrical shear method proves to be  

 
(a) 

 
(b) 

Figure 3: Pile capacity obtained through theoretical 
and numerical methods (a) H2; (b) H3 

conditional for 𝑠/𝐷 ∈ [1,0; 2,0], while the 

individual bearing method controls the pile 

capacity for 𝑠/𝐷 ∈ [2,5; 3,5] - 𝑅 is constant in 

this range for this reason. 

For larger helical plate spacing ratios, in H3 set, 

the results from Perko’s and Stephenson’s are 

similar. Perko only consider the shaft resistance 

along the length of the shaft until the top helix, 

while Stephenson totally despises the 

adhesions stresses along the shaft in pile 

capacity calculations.  

 

Table 2: Analytical approaches reviewed 

Method Direction of the force Author(s) Year Label 

Cylindrical 
shear method 

Tension 

Rao, Prasad & Shetty [4,6,7] 1991 CC – RP&S (T) 

Rao, Prasad & Veeresh [8] 1993 CC – RP&V (T) 

S. P. Clemence [9] 1985 CC – Clem (T) 

Compression Rao, Prasad & Shetty [4,6,7] 1991 CC – RP&S (C) 

Compression/Tension R. W. Stephenson [10] 2003 CC – Steph 

Individual 
bearing method 

Compression/Tension 
Adams & Klym [7] 1972 CRI – A&K 

R. W. Stephenson [10] 2003 CRI – Steph 

Both Compression/Tension H. A. Perko [1] 2009 CC-CRI – Perko 
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3.3 Numerical modelling 

The displacement finite element software 

ABAQUS was used to perform all the numerical 

simulations. In the absence of literature 

regarding numerical modelling of HP, 

simulation results were validated with 

compression responses of a single axially 

loaded pile. The ABAQUS models consisted of 

a part divided in several partitions: the soil and 

its mesh refinement zones, and the helical pile. 

The soil was modelled as an elasto-perfectly 

plastic with failure described by the Drucker-

Prager yield criterion. The elastic behaviour 

was defined by a Poisson’s ration equal to 0.48, 

and a ratio of Young’s modulus to shear 

strength of 𝐸/𝑆𝑢 = 400. The steel was modelled 

as an elastic material defined by a Poisson’s 

ration equal to 0.30, and a Young’s modulus of 

210 GPa. The overall mesh dimensions were 

selected to ensure that the zones of plastic 

shearing and the observed displacement fields 

were contained within the model boundaries. A 

typical part for this problem, along with the 

applied displacement boundary conditions is 

shown in Figure 4. To determine the collapse 

load of the HP, a prescribed displacement was 

applied in the top of the pile [5].  

 
Figure 4: ABAQUS model and boundary conditions 

Figure 5 shows the displacement field of the set 

of models run with 2 helices. It is possible to 

confirm the confirm the two failure mechanisms 

described in the literature. In Figure 5(a) and (b) 

the entire volume of soil between helical plates 

is mobilized and develops a cylindrical shear 

surface, while in Figure 5(e) and (f) each helix 

behaves independently as explained by the 

individual bearing method. The results of the 

analysis H2SD2,0 (C) and H2SD2,5 (C) seem 

to suggest a transition zone between both 

failure mechanisms, since the formed cylinder 

no longer displays the width of the helical plates 

and there is no clear individual response 

around the helices (Ficure 5(c) and (d)). 

(a)                      (b)                        (c) 

           (d)                      (e)                      (f) 
Figure 5: Contour displacements illustrating failure 
mechanisms (a) H2SD1,0 (C); (b) H2SD1,5 (C); 
(c)H2SD2,0 (C); (d) H2SD2,5 (C); (e) H2SD3,0 (C); 

(f) H2SD3,5 (C) 

Figure 6 shows the displacement field of the set 

of models run with 3 helices. The behaviour is 

similar to the results observed previously: for 

small helical plate spacing ratios, the cylindrical 

shear surface is observed. However, 

comparing the models with the same helical 

plate spacing ratios in both sets of HP, the 

cylindrical shear surface seems to develop for 

higher 𝑠/𝐷 when 𝑛 = 3. Thus, in set H3, the 

transition between the two failure mechanisms 

seems to occur in H3SD2,5(C) and 

H3SD3.0(C). 

          (a)                       (b)                       (c) 

          (d)                       (e)                       (f) 
Figure 6: Contour displacements illustrating failure 
mechanisms (a) H3SD1,0 (C) (b) H3SD1,5 (C); 
(c)H2SD2,0 (C); (d) H3SD2,5 (C); (e) H3SD3,0 (C); 
(f) H3SD3,5 (C) 
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Figure 7 shows the load-displacement curves of 

the various analyses and it is possible to 

conclude that pile capacity increases with the 

increase of the helical plate spacing ratio, 𝑠/𝐷. 

The results also seem to suggest that the 

foundation0s response is more fragile with the 

increase in 𝑠/𝐷. The analyses performed on HP 

under tensile and compression loading also led 

to the conclusion that the bearing capacity is 

similar to the pull-out capacity, for deep helical 

piles. 

 
(a) 

 
(b) 

Figure 7: Load-displacement curves (a) H2(C); (b) 

H3(C) 

3.4 Proposed analytical formulation 

Given the significant differences obtained in the 

estimation of pile capacity (Figure 3), a new 

analytical formulation was developed. These 

differences are in line with what is highlighted 

by several authors in the literature, which 

emphasize the low suitability of these methods 

to estimate the pile capacity of helical piles.  

Therefore, the proposed analytical formulation 

(PAF) recommends adopting a bearing 

capacity factor more adjusted to the specific 

behavior of this type of piles. Merifiel and Smith  

[5] had already stated this issue, concluding 

that the maximum total capacity of a helical 

plate cannot exceed the sum of the individual 

helical plate capacities. Also considering what 

Perko [1] proposed, the pile capacity, according 

to the PAF, results from the least value obtained 

both methods.  

It was concluded that, when helical plates act 

independently of each other (𝑠/𝐷 = {3,0; 3,5}), 

the bearing capacity factor presented by Rowe 

seems to fit very well the results obtained, both 

numerically and in the shape of the failure 

surface (Figure 8). Thus, the PAF adopts the 

same bearing capacity factor to apply the 

individual bearing method. 

𝑁𝑐 = 2 + 3𝜋 
(a) (b) 

Figure 8: (a) Upper bound mechanism for deep 
failure mode by Rowe (1978, adapted from [5]); (b) 

Contour displacements of H2SD3,5 (C) 

Based on the results from the performed 

numerical analyses, the PAF also assumes 

adhesion stresses along the entire length of 

shaft. Therefore, the pile capacity of a HP using 

the individual bearing method is given by: 

𝑅 =∑(2 + 3𝜋)𝑆𝑢𝐴𝑖

𝑛

𝑖⏟          
𝑅ℎ

+ 𝛼𝑆𝑢𝐿(𝜋𝑑)⏟      
𝑅𝑓

 
(5) 

When the spacing between helices is reduced, 

the shape of the failure surface developed next 

to the top helix is similar to that observed next 

to the bottom helix. Thus, and because the 

developed stresses near the top and bottom 

helices resembles that of a simple pile with 

diameter 𝐷, the PAF suggest the adoption of 

𝑁𝑐 = 9. The pile capacity of a HP using the 

cylindrical shear method, according to the PAF, 

is given by: 

𝑅 = (9𝑆𝑢𝐴ℎ) × 2⏟        
𝑅ℎ

+ 𝑆𝑢(𝑛 − 1) 𝑠𝜋𝐷⏟        
𝑅𝑐𝑖𝑙

+ 𝛼𝑆𝑢𝐻𝑇(𝜋𝑑)⏟      
𝑅𝑓

 
(6) 

All the parameters have been defined 

previously. 
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Figure 9 shows the results for the pile capacity 

obtained according to the PAF and through 

numerical analysis. For set H2, the individual 

bearing method controls the pile capacity for 

𝑠/𝐷 > 1,5, whereas for set H3 the estimated 

pile capacity is limited by this method when 

𝑠/𝐷 > 3,0. Comparing the analytical results 

with those obtained by ABAQUS, it is possible 

to verify a very good agreement between the 

pile capacity estimated according to the PAF 

and that obtained by the FEM to both tensile 

and compressive loading. The obtained relative 

error between these results is less than 5% for 

the helical plate spacing ratios considered. 

Since the mechanisms by which helical piles 

develop resistance to the load are described in 

a manner consistent with basic principles of soil 

mechanics, pile capacity increase with the 

increase of helical plate spacing ratio. When 

helices act together, this increase it is a function 

of the diameter of helical plates, 𝐷. On the other 

hand, when helical plates act independently of 

each other, the increase of the pile capacity 

becomes a function of the diameter of the 

helical pile shaft, 𝑑.  

It is also possible to verify in Figure 9 that helical 

piles with two helices follow the behaviour 

described by the cylindrical shear method for 

small 𝑠/𝐷, whereas for larger helical plate 

spacing ratios, HP follow the behaviour 

described by the individual bearing method. For 

𝑛 = 3, the individual bearing method only 

seems to be conditioning the behaviour of the 

helical plates for 𝑠/𝐷 > 3,0. Thus, for helical 

plate spacing ratios lower than this value, the 

helical plates do not seem to present an 

individual response. 

 
Figure 9: Pile capacity obtained according to the PAF 
and through numerical analysis 

Therefore, the PAF suggests the following 

behaviour for helical piles: 

• 𝑠/𝐷 < 2,0 – failure mechanism described by 

the cylindrical shear method; 

• 2,0 < 𝑠/𝐷 < 3,5 – transition zone between 

the two methods; 

• 𝑠/𝐷 > 3,5 – failure mechanism described by 

the individual bearing method. 

This should be taking into the account in the 

design of helical plate, having in mind that the 

behaviour of this foundations depends on the 

helical plate spacing ratios. 

4 Numerical analysis: behaviour 

of helical piles in two-layered 

soil 

In fact, the geotechnical project is not always 

confronted with the scenario proposed in the 

previous chapter, in which the surface layer, of 

low resistance, extends several meters deep. 

Instead, is more common that this layer is 

based on a more resistant substratum. Thus, it 

is intended to study the influence of the 

conditions at the base of the HP. It was chosen 

to model only the helical piles with smaller and 

greater helical plate spacing ratios of the set of 

piles with two helices, namely H2SD1,0 and 

H2SD3,5. However, to understand the impact 

of the top helix in the bearing capacity, the 

same piles were modelled without this helix. 

Theses analyses were called H1SD1,0 and 

H1SD3,5. To differentiate the results obtained 

in the previous chapter from those obtained in 

this one, from now on, it will be added to the 

case names the following acronyms: 1L, for 

analyses performed in homogenous scenario, 

and 2L, for analyses performed in a two-layered 

soil. 

4.1 Analytical methods 

As no specific method was found in the existing 

literature to estimate the pile capacity in a two-

layered soil, a generic approach was compared 

with the numerical analysis developed. It was 

chosen to compare the H. A. Perko’s approach, 

presented in Perko [1], one of the most 

complete books on the subject. Therefore, in 

Table 3 is presented the bearing capacity 

estimated for the different cases. There is no 

difference regarding the calculation method in  
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Table 3: Bearing capacity estimated according to Perko [1] 

Case name 𝑹𝒉 [kN] 𝑹𝒄𝒊𝒍 [kN] 𝑹𝒇 [kN] 𝑹𝒉,𝒕 [kN] 𝑹𝒉,𝒃 [kN] 𝑹𝒄 [kN] 

H1SD1,0 | 2L 91,2 - 14,0 - 91,2 105,2 

H1SD3,5 | 2L 91,2 - 16,4 - 91,2 107,6 

H2SD1,0 | 2L 91,2 4,1 13,0 9,1 91,2 108,3 

H2SD3,5 | 2L 91,2 14,2 13,0 9,1 91,2 113,4 

cases H1SD1,0 and H1SD3,5, since the HP are 

modelled with just one helix. In set H2, the 

cylindrical shear method controls the bearing 

capacity when 𝑠/𝐷 = 1,0, whereas the 

individual bearing method is conditional when 

𝑠/𝐷 = 3,5. These results are similar to those 

estimated in homogenous soil. 

Unlike the homogenous scenario, Perko’s 

approach overestimates the bearing capacity of 

HP in two-layered soils. Figure 10 shows the 

diagrams of the applied normal force along the 

shaft’s depth, estimated according to Perko [1] 

and obtained through numerical analyses. 

Although the difference in the overall bearing 

capacity varies between 11,6% and 16,6%, the 

greatest gap concerns the calculation in the 

helical plates’ capacity. The bottom helix’s 

capacity is drastically overestimated, unlike the 

top helix. 

 
Figure 10: Normal force VS Depth estimated 
according to Perko [1] and obtained through 

numerical analysis 

4.2 Numerical modelling 

Again, the displacement finite element software 

ABAQUS was used to perform the numerical 

simulations, which follow what was presented in 

section 3.3. To simulate the more resistant 

substratum, another material was created, 

similar to the soil previously defined. Thus, the 

difference between the two layers of soil is the 

ratio of Young’s modulus to shear strength. The 

bottom layer is defined by a 𝐸/𝑆𝑢 = 1000. 

Figure 11 shows the load-displacement curves 

of the analyses in homogenous and two-

layered soil. The overall bearing capacity is 

achieved for displacements approximately 

equal to 10% of the diameter, 𝐷. The presence 

of a more resistant layer at the base increases 

substantially the bearing capacity of the HP. In 

the results obtained, the bearing capacity of a 

HP in a two-layered soil increased by more than 

twice as much as in homogeneous soil. 

 
Figure 11: Load-displacement curves 

Figure 12 shows the diagrams of the applied 

normal force along the shaft’s depth. The 

difference in the bottom helix’s bearing capacity 

is evident, which is proportional to 𝑆𝑢, as would 

be expected. Thus, it is possible to confirm that 

the observed increase is a consequence of the 

developed resistance to the load by the bottom 

helix. The same figure seems to suggest that 

the difference in the bearing capacity of models 

H2SD1,0 (C) | 2L and H2SD3,5 (C) | 2L is due  
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to the length of the pile shaft between both 

helices. It should also be noted that the 

increase in the bearing capacity between 𝑠/𝐷 =

1,0 and 𝑠/𝐷 = 3,5,5 in two-layered soil is 

slightly lower, given the resistance mobilized by 

the bottom helix. 

 
Figure 12: Normal force VS Depth 

4.3 Proposed analytical formulation 

Given the significant differences obtained in the 

estimation of bearing capacity and the 

suitability of the analytical approach, a new 

analytical formulation is proposed. 

Analysing manly the resistance mobilized by 

the bottom helix, it is understood that the 

bearing capacity factor applied, 𝑁𝑐 = 9, is 

inadequate. The numerical analysis performed 

suggests a lower value. Therefore, in Figure 13 

the failure surfaces of H2SD1,0 (C) and 

H2SD3,5 (C) in homogenous and two-layered 

soil are compared. It is possible to confirm that 

the size of the failure surface is smaller in the 

second case. Since the results do not present 

significant differences in the behaviour of the 

top helix, the PAF discussed earlier in section 

3.4 was adopted in this helix.  

 
(a)  (b) 

 
(c) 

 
(d) 

Figure 13: Contour displacements (a) H2SD1,0 | 2L; 
(b) H2SD1,0 | 1L; (c) H2SD3,5 | 2L; (d) H2SD3,5 | 1L 

For the bottom helix, considering the 

suggestion to adopt a lower value for 𝑁𝑐, and 

taking into account the shape of the failure 

surface developed next to the base of the HP, it 

was taken 𝑁𝑐 = 2𝜋. Thus, in Table 4 the results 

obtained are presented, as well as the relative 

error between the bearing capacity estimated 

according to the PAF and that obtained by the 

FEM. Figure 14 also compares the diagrams of 

the applied normal force along the shaft’s 

depth, estimated according to the PAF and 

obtained through numerical analyses. It is 

possible to verify a very good agreement 

between the results estimated according to the 

PAF and that obtained by the FEM. The 

maximum relative error obtained between these 

results was 1%.  

However, another reason for the inadequacy of 

applying the same bearing capacity factor in 

both geotechnical scenarios may be related to 

the difference in layers’ undrained shear 

strength. In order to access this explanation, 

new numerical analyses were performed, 

varying the values of layers’ 𝑆𝑢. 

Table 4: Bearing capacity estimated according to PAF and obtained through numerical analysis 

Case name 
 PAF FEM Relative 

error [%] 𝑅𝑓 [kN] 𝑅ℎ,𝑡 [kN] 𝑅𝑐𝑖𝑙 [kN] 𝑅ℎ,𝑏 [kN] 𝑅𝑐 [kN] 𝑅𝑐 [kN] 

H1SD1,0 | 2L 21,0 - - 63,7 84,7 90,2 6,1 

H1SD3,5 | 2L 24,5 - - 63,7 88,3 94,0 6,1 

H2SD1,0 | 2L 19,6 9,1 4,1 63,7 96,4 97,1 0,7 

H2SD3,5 | 2L 24,5 11,6  63,7 99,8 100,8 1,0 

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0

D
e
p

th
, 

z
[m

]

Normal Force, N [kN] 

H2SD1,0 (C) | 2L H2SD3,5 (C) | 2L

H2SD1,0 (C) | 1L H2SD3,5 (C) | 1L



- 10 - 

 

Figure 14: Normal force VS Depth estimated 
according to the PAF and obtained through 

numerical analysis 

Thus, a new variable 𝑘 is introduce: 

𝑘 =
𝑆𝑢,𝑏
𝑆𝑢,𝑡

 (7) 

Where 𝑘 is the ratio of undrained shear strength 

of the top layer, 𝑆𝑢,𝑡, to the undrained shear 

strength of the bottom layer, 𝑆𝑢,𝑏. 

In the analyses already presented, 𝑘 is equal 

to 1 in the models run in homogenous soil, 

and equal to 10 in the models run in two-

layered soil, with 𝑆𝑢,𝑏 = 200 𝑘𝑃𝑎. To be able to 

understand the evolution of 𝑁𝑐 and confirm this 

hypothesis, four more numerical analyses were 

performed with 𝑘 = {2; 5; 20; 60}. The results 

are presented in Figure 15. 

 

Figure 15: Bearing capacity factor VS 𝑘 

With the increase of 𝑁𝑐, 𝑘 tends to stabilize. It 

is reminded that the exact solution for vertically 

centered loading (isolated footings) in  

undrained conditions takes 𝑁𝑐 = 2 + 𝜋 [11]. 

Therefore, it is expected that, the lower the 

value of 𝐶𝑢,𝑡, 𝑁𝑐  tent for this solution. On the 

other hand, if soil is homogeneous, the 

analyses seem to indicate 𝑁𝑐 = 2 + 3𝜋, which 

agrees with the discussed in the previous 

chapter. 

Thus, the PAF suggest the adoption of a 

bearing capacity factor in the range expressed 

in equation 8, according to the value of the 

variable 𝑘. 

2 + 𝜋 < 𝑁𝑐 ≤ 2 + 3𝜋 (8) 

5 Conclusions 

The numerical analysis developed allowed to 

fulfil the proposed objectives, recognizing the 

effectiveness of computational simulation to 

study this topic. It was possible to identify the 

two types of failure surfaces described in the 

existing literature and a good agreement was 

found between the reported failure 

mechanisms, for the considered helical plate 

spacings, and the results of the performed 

analysis. The pile capacity increases with the 

increase of the helical plate spacing ratio, 𝑠/𝐷, 

as with the increase in the number of helices. 

The analytical approaches reviewed proved 

inadequate to estimate the pile capacity of HP, 

demonstrating to be conservative. It was found 

a great disparity between the pile capacity 

estimated according to the analytical 

approaches and that obtained by the numerical 

analysis. The presence of a more resistant 

layer has shown to significantly increase the 

bearing capacity of HP and modify the failure 

surfaces. Therefore, the existing analytical 

formulations to estimate pile capacity in 

homogeneous soil are inadequate. Bearing 

capacity factors must be adjusted to reflect the 

behaviour of helical piles in homogenous and 

two-layered soils. The two PAF show a good 

agreement with the results obtained in the 

numerical analysis performed. The PAF were 

validated for cohesive soils in undrained 

conditions.  
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